type ConstraintViolationError(struct)
ConstraintViolationError results when a requested usage is not permitted by
a certificate. For example: checking a signature when the public key isn't a
certificate signing key.
(T) Error() string
T : error
const CANotAuthorizedForExtKeyUsageInvalidReason = 9
CANotAuthorizedForExtKeyUsage results when an intermediate or root
certificate does not permit a requested extended key usage.
const CANotAuthorizedForThisNameInvalidReason = 2
CANotAuthorizedForThisName results when an intermediate or root
certificate has a name constraint which doesn't permit a DNS or
other name (including IP address) in the leaf certificate.
func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv interface{}) (cert []byte, err error)
CreateCertificate creates a new X.509v3 certificate based on a template.
The following members of template are used:
- AuthorityKeyId
- BasicConstraintsValid
- CRLDistributionPoints
- DNSNames
- EmailAddresses
- ExcludedDNSDomains
- ExcludedEmailAddresses
- ExcludedIPRanges
- ExcludedURIDomains
- ExtKeyUsage
- ExtraExtensions
- IPAddresses
- IsCA
- IssuingCertificateURL
- KeyUsage
- MaxPathLen
- MaxPathLenZero
- NotAfter
- NotBefore
- OCSPServer
- PermittedDNSDomains
- PermittedDNSDomainsCritical
- PermittedEmailAddresses
- PermittedIPRanges
- PermittedURIDomains
- PolicyIdentifiers
- SerialNumber
- SignatureAlgorithm
- Subject
- SubjectKeyId
- URIs
- UnknownExtKeyUsage
The certificate is signed by parent. If parent is equal to template then the
certificate is self-signed. The parameter pub is the public key of the
signee and priv is the private key of the signer.
The returned slice is the certificate in DER encoding.
The currently supported key types are *rsa.PublicKey, *ecdsa.PublicKey and
ed25519.PublicKey. pub must be a supported key type, and priv must be a
crypto.Signer with a supported public key.
The AuthorityKeyId will be taken from the SubjectKeyId of parent, if any,
unless the resulting certificate is self-signed. Otherwise the value from
template will be used.
If SubjectKeyId from template is empty and the template is a CA, SubjectKeyId
will be generated from the hash of the public key.
func CreateCertificateRequest(rand io.Reader, template *CertificateRequest, priv interface{}) (csr []byte, err error)
CreateCertificateRequest creates a new certificate request based on a
template. The following members of template are used:
- SignatureAlgorithm
- Subject
- DNSNames
- EmailAddresses
- IPAddresses
- URIs
- ExtraExtensions
- Attributes (deprecated)
priv is the private key to sign the CSR with, and the corresponding public
key will be included in the CSR. It must implement crypto.Signer and its
Public() method must return a *rsa.PublicKey or a *ecdsa.PublicKey or a
ed25519.PublicKey. (A *rsa.PrivateKey, *ecdsa.PrivateKey or
ed25519.PrivateKey satisfies this.)
The returned slice is the certificate request in DER encoding.
func CreateRevocationList(rand io.Reader, template *RevocationList, issuer *Certificate, priv crypto.Signer) ([]byte, error)
CreateRevocationList creates a new X.509 v2 Certificate Revocation List,
according to RFC 5280, based on template.
The CRL is signed by priv which should be the private key associated with
the public key in the issuer certificate.
The issuer may not be nil, and the crlSign bit must be set in KeyUsage in
order to use it as a CRL issuer.
The issuer distinguished name CRL field and authority key identifier
extension are populated using the issuer certificate. issuer must have
SubjectKeyId set.
func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error)
DecryptPEMBlock takes a password encrypted PEM block and the password used to
encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
the DEK-Info header to determine the algorithm used for decryption. If no
DEK-Info header is present, an error is returned. If an incorrect password
is detected an IncorrectPasswordError is returned. Because of deficiencies
in the encrypted-PEM format, it's not always possible to detect an incorrect
password. In these cases no error will be returned but the decrypted DER
bytes will be random noise.
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)
EncryptPEMBlock returns a PEM block of the specified type holding the
given DER-encoded data encrypted with the specified algorithm and
password.
var ErrUnsupportedAlgorithmerror
ErrUnsupportedAlgorithm results from attempting to perform an operation that
involves algorithms that are not currently implemented.
const ExpiredInvalidReason = 1
Expired results when a certificate has expired, based on the time
given in the VerifyOptions.
const IncompatibleUsageInvalidReason = 4
IncompatibleUsage results when the certificate's key usage indicates
that it may only be used for a different purpose.
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
MarshalECPrivateKey converts an EC private key to SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY".
For a more flexible key format which is not EC specific, use
MarshalPKCS8PrivateKey.
func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte
MarshalPKCS1PrivateKey converts an RSA private key to PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PRIVATE KEY".
For a more flexible key format which is not RSA specific, use
MarshalPKCS8PrivateKey.
func MarshalPKCS1PublicKey(key *rsa.PublicKey) []byte
MarshalPKCS1PublicKey converts an RSA public key to PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PUBLIC KEY".
func MarshalPKCS8PrivateKey(key interface{}) ([]byte, error)
MarshalPKCS8PrivateKey converts a private key to PKCS #8, ASN.1 DER form.
The following key types are currently supported: *rsa.PrivateKey, *ecdsa.PrivateKey
and ed25519.PrivateKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func MarshalPKIXPublicKey(pub interface{}) ([]byte, error)
MarshalPKIXPublicKey converts a public key to PKIX, ASN.1 DER form.
The encoded public key is a SubjectPublicKeyInfo structure
(see RFC 5280, Section 4.1).
The following key types are currently supported: *rsa.PublicKey, *ecdsa.PublicKey
and ed25519.PublicKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
const NameConstraintsWithoutSANsInvalidReason = 6
NameConstraintsWithoutSANs results when a leaf certificate doesn't
contain a Subject Alternative Name extension, but a CA certificate
contains name constraints, and the Common Name can be interpreted as
a hostname.
This error is only returned when legacy Common Name matching is enabled
by setting the GODEBUG environment variable to "x509ignoreCN=1". This
setting might be removed in the future.
const NameMismatchInvalidReason = 5
NameMismatch results when the subject name of a parent certificate
does not match the issuer name in the child.
func ParseCertificates(asn1Data []byte) ([]*Certificate, error)
ParseCertificates parses one or more certificates from the given ASN.1 DER
data. The certificates must be concatenated with no intermediate padding.
func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error)
ParseCRL parses a CRL from the given bytes. It's often the case that PEM
encoded CRLs will appear where they should be DER encoded, so this function
will transparently handle PEM encoding as long as there isn't any leading
garbage.
func ParseECPrivateKey(der []byte) (*ecdsa.PrivateKey, error)
ParseECPrivateKey parses an EC private key in SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY".
func ParsePKCS1PrivateKey(der []byte) (*rsa.PrivateKey, error)
ParsePKCS1PrivateKey parses an RSA private key in PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PRIVATE KEY".
func ParsePKCS1PublicKey(der []byte) (*rsa.PublicKey, error)
ParsePKCS1PublicKey parses an RSA public key in PKCS #1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "RSA PUBLIC KEY".
func ParsePKCS8PrivateKey(der []byte) (key interface{}, err error)
ParsePKCS8PrivateKey parses an unencrypted private key in PKCS #8, ASN.1 DER form.
It returns a *rsa.PrivateKey, a *ecdsa.PrivateKey, or a ed25519.PrivateKey.
More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error)
ParsePKIXPublicKey parses a public key in PKIX, ASN.1 DER form.
The encoded public key is a SubjectPublicKeyInfo structure
(see RFC 5280, Section 4.1).
It returns a *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey, or
ed25519.PublicKey. More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
const PEMCipher3DESPEMCipher = 2
Possible values for the EncryptPEMBlock encryption algorithm.
const PEMCipherAES128PEMCipher = 3
Possible values for the EncryptPEMBlock encryption algorithm.
const PEMCipherAES192PEMCipher = 4
Possible values for the EncryptPEMBlock encryption algorithm.
const PEMCipherAES256PEMCipher = 5
Possible values for the EncryptPEMBlock encryption algorithm.
const PEMCipherDESPEMCipher = 1
Possible values for the EncryptPEMBlock encryption algorithm.
func SystemCertPool() (*CertPool, error)
SystemCertPool returns a copy of the system cert pool.
On Unix systems other than macOS the environment variables SSL_CERT_FILE and
SSL_CERT_DIR can be used to override the system default locations for the SSL
certificate file and SSL certificate files directory, respectively. The
latter can be a colon-separated list.
Any mutations to the returned pool are not written to disk and do not affect
any other pool returned by SystemCertPool.
New changes in the system cert pool might not be reflected in subsequent calls.
const TooManyConstraintsInvalidReason = 8
TooManyConstraints results when the number of comparison operations
needed to check a certificate exceeds the limit set by
VerifyOptions.MaxConstraintComparisions. This limit exists to
prevent pathological certificates can consuming excessive amounts of
CPU time to verify.
const UnconstrainedNameInvalidReason = 7
UnconstrainedName results when a CA certificate contains permitted
name constraints, but leaf certificate contains a name of an
unsupported or unconstrained type.
The pages are generated with Goldsv0.1.6. (GOOS=darwin GOARCH=amd64)
Golds is a Go 101 project and developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.